If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8z^2+8z+6=0
a = -8; b = 8; c = +6;
Δ = b2-4ac
Δ = 82-4·(-8)·6
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16}{2*-8}=\frac{-24}{-16} =1+1/2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16}{2*-8}=\frac{8}{-16} =-1/2 $
| 10x+-35=-5 | | x=3^2+4^2 | | 10-1x=0 | | 2(3x-7)+6=4x-3(2-2x | | 15+6x=123 | | 7(7x+2)-x+3=5(2x) | | P(t)=t4-13t2+36=0 | | 57-3x=48 | | P(t)=t4-13t2+36 | | 1/2y+1/2y+5=7 | | 3x+14=110 | | 16x^2-+2x^2+3x-86=0 | | 3y-2/5-3=y/4 | | 1=6+2x | | -7-2n-6n=9n-7n+14 | | m-9/4+3=m/6 | | 0.5-0.4x=0.2 | | 6+4(4x+6)=30 | | 6(4t+1)=6(4t-1) | | 10x-12x=-3+-5 | | -2/5=5/x | | 0.07x+x=36.50 | | 3(x+1)+4(2x-1)=5(2x+7) | | 9(t-4)-7(t-6)=32 | | 5x+0.6=x+1 | | 5(3x+2)=8(9-2x)+1 | | 7+(z)/(2)=10 | | 9/8x+11/6=-5/12 | | 10+12m+16=-90 | | 7)a-5)=63 | | -5/8x+x=1/8 | | -6n+1-3n+n-7=6 |